

CdTe Detectors for Quantitative X-Ray Fluorescence

R. Redus, J. Pantazis, T. Pantazis, A. Huber

Amptek, Inc 14 DeAngelo Dr, Bedford MA 01730

B. Cross

CrossRoads Scientific 414 Av. Portola, El Granada, CA

Why use CdTe?

Much higher sensitivity > 20 keV

RoHS/WEE demands accurate measurement of metals

With CdTe, one can measure K X-rays (with few interferences) with much higher sensitivity than Si diodes

Electronic Hole Escape 1.0E+05 Peaks Tailing Noise 1.0E+04 1.0E+03 Counts Compton 1.0E+02 Continuum 1.0E+01 1.0E+00 20 0 40 60 80 100 120 140 Energy (keV)

Key Spectral Characteristics of CdTe

- Resolution
 - Electronic Noise ___
 - Hole tailing
- Escape peaks
- Continuum
 - Compton —
 - Dead layer —
- Other
 - Stability
 - Linearity —

Apparatus

Detectors

- CdTe
 - Compound semiconductor with wide bandgap (4.4 eV), high density (6.2 g/cm³), and high atomic number (48,52)
 - Charge transport better than most alternatives $\mu \tau_h = 2x10^{-4} \text{ cm}^2/\text{V}$
 - Studied and used for γ -ray spectroscopy since late 1960s
- Amptek detectors
 - Schottky (blocking) contacts to reduce leakage current
 - $I_{dark} \approx 5 \text{ nA/cm}^2 \text{ at } 500 \text{V} \text{ and } 300 \text{K}$
 - $M\pi n$ structure from Acrorad, Inc
- Good yield, reproducible properties
- Amptek diodes are 0.5 to 1 mm thick from 3x3 to 7x7 mm²
- Results here are for $0.75 \times 5 \times 5 \text{ mm}^3$ unless otherwise stated

Apparatus

Thermoelectrically Cooled Solid State Detector

- Reasons for thermoelectric cooling
 - Reduces shot noise and thermal noise
 - Cooling invisible to user
- Two stage cooler for >80°C differential
 - 215K for lab use
 - 240K for field use (at ambient of 45°C)
- FET and feedback components on cooler
 - Leakage currents as low as 5 fA
 - Low stray capacitance, reduced EMI pickup
- Continuous feedback preamp using current divider

®

Apparatus

X123, PX4, DP4

- All are complete spectroscopy systems
- All share core technologies
 - Digital pulse processor for pulse shaping, selection logic, and multichannel analyzer
 - Power supplies, including 1.5 kV bias supply and closed loop temperature control
 - USB interface, +5V power input
- Targeted at different applications

PX4 DIGITAL PULSE PROCESSOR

PX4 and XR100 for benchtop & laboratory

DP4 and PA210 for embedding in instruments

Electronic Noise

CdTe Noise Components

- Typical results with a 25 mm² x0.75 mm detector
- Noise corner <600 eV FWHM near 6.4 μ sec peaking time
- Noise dominates below 30-50 keV, Fano broadening above

Hole Tailing: Origins

Page 9 of 25

Hole Tailing: Effects

"Physics" based model

- Charge collection $\Rightarrow Q(x)$
- Photoelectric absorption $\Rightarrow N(x)$
- Combination \Rightarrow N(Q)
- Convolve with Gaussian
 ENC and Fano
- Fairly accurate representation
- Estimate performance
- Not in analytical form, so difficult to use for spectra fitting

AMP

2007 Denver X-ray Conference

Page 10 of 25

®

TEK

Hole Tailing: Effects

Photopeak shape

<20 keV: All interactions near cathode, no tailing, Gaussian ≈50 keV: Small asymmetric correction to Gaussian ≈100 keV: Interactions uniform, tail important, shape complex Can model using Van Espen type tail but truncate at Q_{anode}

Much more important in CdTe than in Si

- Cd & Te $\omega_{\rm K} \approx$ 85%, 5% in Si
- K X-ray attenuation lengths 0.1 to 0.2 mm

	X-ray energy (keV)
Te K_{β}	31.0
Te K_{α}	27.5
$Cd\;K_{\!\beta}$	26.1
$Cd K_{\alpha}$	23.2

2007 Denver X-ray Conference

20%

®

TEK

Escape Peaks: Correction

Intensity vs energy

- Computed using EGS4
 Monte Carlo software
 Carried out by Paul Bennett of RMD, Inc.
- Data using filtered isotopic sources.

Algorithm

- 4 analytical equations, one for each of the weighted centroids for K_{α} and K_{β} of Cd and Te
- Subtraction starts at high energy, looking for all events above K edge

AMP

where Esc=escape events, e=parent energy, and the a terms are coefficients.

Escape Peaks: Correction

Results of Correction: Filtered Ag Tube Spectrum at 30 kVp

- Filter should remove everything below 14 keV.
- Raw spectrum (blue) shows broad peak around 5 keV, due to escapes
- Correction algorithm moves to the gray, removing almost entirely.
- Had to adjust Cd escape edge from 26.7 to 26.0 keV not clear why.

Escape Peaks: Correction

Results of Correction: W Tube Spectrum at 80 kVp

- Raw spectrum (blue) has large "steps" at K edges
- Theoretical correction (yellow) helped but left some structure at K edges
- Adjusting the Cd-K edge from 26.7 to 26.0 keV improves greatly, leaves a little structure at the K edges.

Escape Peaks: Correction

Result of Correction: Pure Lead

- Raw spectrum (blue) has clear escape peaks from 40 to 55 keV
- Four primary peaks, plus continuum, each with four escape peaks
- Gray represents the "reassigned" photons
- Yellow processed spectrum shows change to continuum and peaks

Compton Background

Continuum Removal

- CdTe spectra, at higher energy, have more scattering into detector
- Plot shows result of applying Si parameters to CdTe
- Yields residual false peaks

Compton Background

Continuum Removal

- Adjust parameters to give high curvature background continuum
 - First, Cd-Te escape peaks are removed (partially at least)
 - Second, automatic background function applied to spectrum
- Very little residual continuum

Dead Layer Effects CdTe dead layer much more

- CdTe dead layer much more significant than Si
 - Metal contact (200nm Pt)
 - CdTe higher Z and density
- Secondary electrons deposit more energy while escaping
- At low energies, peak to background ratio lower for CdTe

®

TEK

AMP

Low Energy Background

Stability

Does CdTe polarize?

- At room temperature and low electric field strength, CdTe Schottky diodes polarize
- Polarization slows rapidly with cooling and high bias voltage
- As operated in XR100-CdTe, negligible on time scale of days
- Recovers within minutes at zero bias

Stability

- Left: photopeak centroid and counts over 5 days
 - Gain fluctuations consistent with 30 ppm/°C temperature coefficient
 - Count rate follows radioactive decay of ⁵⁷Co
- Right: Spectra measured 60 hours apart
- Stable over period of days. Expect drift at some longer time scale

AMP TEK

Linearity

Highly Linear at X-ray Energies

- 14 to 136 keV
- $R^2 = 0.0.999997$
- Use peak channel, not centroid
- At higher energies, use Q_{max} from photopeak fit

Reproducibility

- Plots show data from production lot of 20 detectors
- One detector exhibited higher noise and worse tailing
- Other nineteen consistent

Conclusion

- Sample analysis of Pb-Sn Solders
- Spectrum Processing
 - Cd-Te escape
 - Background
 - Gaussian peak fits
- FP Calibration
 - Pure Sn & Pb stds.
- FP Analysis
 - 68% Sn for Sn-Pb thickness = 1 mm
 - 63% Sn for Sn-Pb thickness = 0.5 mm
 - (Nominal Sn = 63%)

Even though Pb- K_{α} peaks have significant lowenergy tails, quantitative analysis is possible.

®

TEK

AMP

Conclusions

- CdTe is a powerful tool for measuring metals via XRF
 - It has high sensitivity for K lines, with fewer interferences
 - One can carry out quantitative analysis
- Spectral characteristics require changes to algorithms
 - Hole tailing shape is different
 - Escape peaks more significant
 - Continuum more significant and shape different
 - Amptek's XRS-FP will implement these corrections
- For more information, go to www.amptek.com